Research Objective

Problem Statement:

Current traffic management relies on expected recurring congestion.

Rare disruptions (e.g., accidents) are challenging to detect and handle.

Goal of Research:

Develop baseline models for expected traffic conditions.

Identify deviations from baseline (nonrecurrent events) using machine learning. Improve incident detection and traffic management.

Literature Review

Traditional Incident Detection:

Focus on freeways and uninterrupted traffic.

Methods: California algorithm, McMaster algorithm, flow-occupancy diagrams.

Limitations:

Few methods work effectively on arterial roadways.

Existing methods struggle with real-world applications (e.g., holidays, events).

Emerging Approaches:

Machine Learning gaining traction for traffic analysis (e.g., SVM, Neural Networks).

List of Reference

•Ahmed, S., & Hawas, Y. (2012). A Bayesian approach for traffic incident detection using traffic surveillance cameras. Journal of Transportation Engineering, 138(5), 595-605. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000353

•Chassiakos, A. P., & Stephanedes, Y. J. (1993). A smoothing method for incident detection on freeways. Transportation Research Part B: Methodological, 27(4), 283-294. https://doi.org/10.1016/0191-2615(93)90021-5

•Evans, W., Gupta, A., & Pinsky, V. (2020). Urban traffic incident detection and management: A state-of-the-art review. Transportation Research Part C: Emerging Technologies, 118, 102768. https://doi.org/10.1016/j.trc.2020.102768

•Ghosh, S., & Smith, J. (2014). Neural network-based approach for traffic incident detection using real-time data. *Transportation Research Part C: Emerging Technologies*, 40, 75-85. https://doi.org/10.1016/j.trc.2014.01.004

•Medina, J. C., & Liu, X. L. (2023). Network Effects of Disruptive Traffic Events. NITC-RR-1082. Portland, OR: National Institute for Transportation and Communities.

•Payne, H. J., & Tignor, A. S. (1978). A freeway incident detection system using a statistical approach. IEEE Transactions on Vehicular Technology, 27(3), 115-118. https://doi.org/10.1109/TVT.1978.34959

•Persaud, B. N. (1990). Incident detection on urban arterials using flow-occupancy diagrams. Transportation Research Part B: Methodological, 24(3), 135-144. https://doi.org/10.1016/0191-2615(90)90012-M

•Sethi, A., Koppelman, F. S., & Bar-Gera, H. (1995). An approach to incident detection using dynamic data from freeway sensors. *Transportation Research Part C: Emerging Technologies*, 3(1), 33-47. https://doi.org/10.1016/0968-090X(95)00016-V

•Sermons, T. L., & Koppelman, F. S. (1996). A methodology for freeway incident detection using vehicle flow data. *Transportation Research Part C: Emerging Technologies*, 4(2), 67-80. https://doi.org/10.1016/0968-090X(95)00041-J

•Wang, J., Huang, X., & Deng, Y. (2018). Traffic incident detection using support vector machines and neural networks: A review. Journal of Transportation Engineering Part A: Systems, 144(3), 04018003. https://doi.org/10.1061/JTEPBS.0000161

•Zhang, H., & Taylor, B. D. (2006). Application of belief networks in traffic incident detection and management. Journal of Transportation Engineering, 132(6), 455-461. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:6(455)

Research Methodology

Data Collection:

High-resolution data from Automated Traffic Signal Performance Measures (ATSPM). Data acquisition every 5 minutes.

Model Development:

Focus on location-specific traffic trend models using machine learning.

Test and implement algorithms for identifying non-recurrent events (disruptions).

Machine Learning:

Exploration of neural networks, reinforcement learning, and timeseries trend models.

ATSPM

Automated Traffic Signal Performance Measures

al Selection		Chart Selection	
al ID gnal ID Select Press Enter to select signa	í.	Date Selection	
Signal List Signal Map		Start Date 11/30/2024 12:00 AM ✓ End Date	November 2024 Su Mo Tu We Th Fr Sa 1 2
Area	Jurisdiction	11/30/2024 11:59 PM 🗸	3 4 5 6 7 8 9
Select an Area	Select a Jurisdiction	Reset Date	10 11 12 13 14 15 16
Region	Metric Type		24 25 26 27 28 29 30
OREGON Boise IDAH Reno NEVADA	WYOMING WYOMING Cheyenne Fort Collins O Denver	Create Chart	

Data Collection and Error Distribution

Signal Id	Timestam	Event Code	Event Parar	neter
7181	00:00.0	49	3	
7181	00:00.0	49	7	
7181	00:00.0	316	74	
7181	00:00.0	318	28	
7181	00:00.0	320	0	
7181	00:00.1	82	4	
7181	00:00.1	174	0	
7181	00:00.3	81	4	
7181	00:00.7	82	4	
7181	00:00.8	81	4	
7181	00:00.9	82	4	
7181	00:01.1	81	4	
7181	00:01.2	81	3	
7181	00:01.2	82	4	
7181	00:01.3	44	6	
7181	00:01.3	81	4	
7181	00:01.3	82	3	
7181	00:01.4	43	6	
7181	00:02.4	82	33	
7181	00:03.5	82	4	
7181	00:03.7	81	4	
7181	00:03.7	82	37	
7181	00:03.7	82	42	
7181	00:03.9	81	37	
7181	00:03.9	81	42	
7181	00:04.2	81	33	
7181	00:04.7	82	4	
7181	00:04.8	81	4	
7181	00:05.5	82	35	
7181	00:05.9	81	3	
7181	00:06.1	82	4	
7181	00:06.1	82	34	
7181	00:06.3	81	4	
7181	00:06.5	82	47	

-12.4223	0.246833	
-12.3743	0.257801	
-12.3264	0.26867	
-12.2784	0.279386	
-12.2305	0.289895	
-12.1826	0.300143	
-12.1346	0.310076	
-12.0867	0.319638	
-12.0387	0.328776	
-11.9908	0.337437	
-11.9429	0.345571	
-11.8949	0.353129	
-11.847	0.360065	
-11.799	0.366335	
-11.7511	0.371902	
-11.7032	0.376729	
-11.6552	0.380786	
-11.6073	0.384048	
-11.5593	0.386491	
-11.5114	0.388102	
-11.4635	0.388869	
-11.4155	0.388788	
-11.3676	0.387858	
-11.3196	0.386086	
-11.2717	0.383483	
-11.2238	0.380067	
-11.1758	0.37586	
-11.1279	0.370888	
-11.0799	0.365183	
-11.032	0.358781	
-10.9841	0.351723	
-10.9361	0.344051	
-10.8882	0.335812	
10 8402	0 327055	

X_Values Probability_Density

Actual Data vs Predictions

limestamp	Actual	Train Pred Test Prediction	
1/3/2022 0:00	24		
1/3/2022 0:10	11	26.7034	
1/3/2022 0:20	20	11.39639	
1/3/2022 0:30	12	22.03851	
1/3/2022 0:40	14	12.58897	
1/3/2022 0:50	14	14.96647	
1/3/2022 1:00	13	14.96647	
1/3/2022 1:10	10	13.77899	
1/3/2022 1:20	13	10.20127	
1/3/2022 1:30	18	13.77899	
1/3/2022 1:40	11	19.69119	
1/3/2022 1:50	6	11.39639	
1/3/2022 2:00	5	5.395084	
1/3/2022 2:10	12	4.187083	
1/3/2022 2:20	6	12.58897	
1/3/2022 2:30	9	5.395084	
1/3/2022 2:40	1	9.003585	
1/3/2022 2:50	8	-0.67094	
1/3/2022 3:00	7	7.80333	
1/3/2022 3:10	4	6.6005	
1/3/2022 3:20	5	2.976476	
1/3/2022 3:30	5	4.187083	
1/3/2022 3:40	10	4.187083	
1/3/2022 3:50	6	10.20127	
1/3/2022 4:00	3	5.395084	
1/3/2022 4:10	4	1.763283	
1/3/2022 4:20	4	2.976476	
1/3/2022 4:30	7	2.976476	
1/3/2022 4:40	12	6.6005	
1/3/2022 4:50	19	12.58897	
1/3/2022 5:00	18	20.86609	
1/3/2022 5:10	21	19.69119	
1/3/2022 5:20	26	23.20844	
1/3/2022 5:30	51	29.02112	

Future Research Directions and Variables to Explore

Next Steps in Research:

Adjusting Variables: Modify variables to better capture the influence of accidents on traffic flow, such as:

- Road Type (e.g., urban vs freeway): Accidents might affect traffic more significantly on certain types of roads.
- Time of Day: Accidents during peak traffic hours could have a stronger impact on traffic.
- Weather Conditions: Incorporate weather data to understand its role in both accident occurrence and traffic volume changes.

Additional Methods to Explore:

Machine Learning Models: Use more complex models (e.g., Random Forests, XGBoost) to capture non-linear relationships and interactions between multiple variables.

Spatio-Temporal Analysis: Investigate accident impact using spatial and temporal data analysis to see if accidents in specific locations or times create more significant traffic disruptions.

Event-based Clustering: Group accidents and traffic data by types of incidents (e.g., collisions, road closures, weather-related incidents) to understand how different event types affect traffic.

Objective:

To identify clearer patterns and build predictive models that help authorities respond faster to accidents based on anticipated traffic changes.

Thank You

Wooyoung Kim (u1295012@utah.edu)

