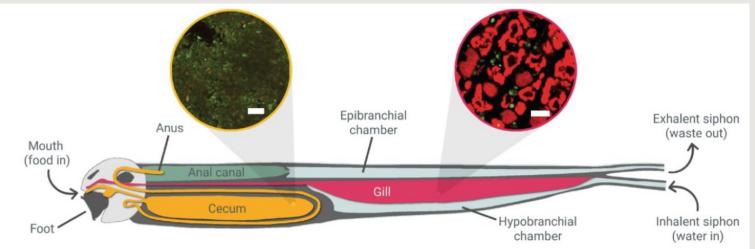
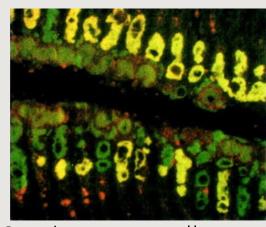
Effects of Culture Conditions on Secondary Metabolite Production in Teredinibacter turnerae

MARINA GERTON


SCHMIDT LAB - MEDICINAL CHEMISTRY

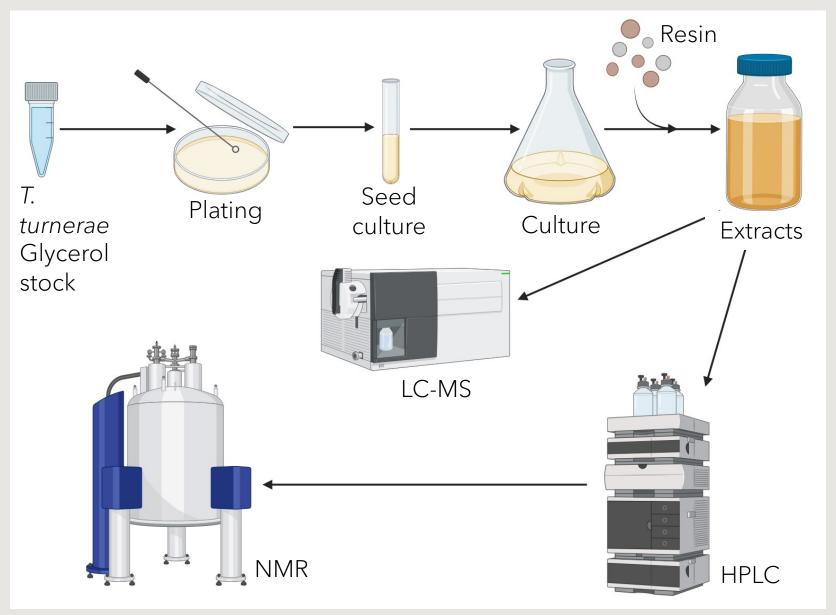
Shipworms



- Wood-eating marine bivalves
- Symbiotic bacteria in the gill tissue
- Near-sterile cecum

Shipworm-Bacteria Symbiosis

- Bacteria fix nitrogen, provide cellulases and secondary metabolites for shipworms
 - Helps shipworms digest cellulose and hypothetically prevent glucose scavenging
- Bacteria reside in specialized cells called bacteriocytes
- Lab culturing conditions vary greatly from in situ environment

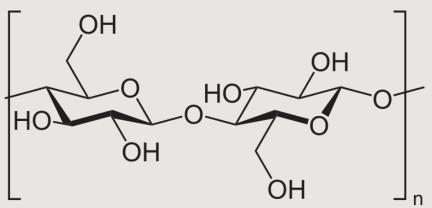


Symbionts in gill tissue

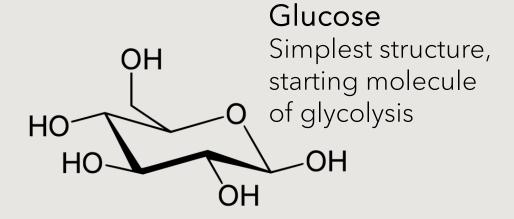
Three Chapters

- Selecting standard media conditions
 - Examining growth times and media components
- Exploring culturing conditions and carbon sources
 - Using various sugars and clam extracts
- Waste streams as carbon sources
 - Paper and plant waste as carbon sources

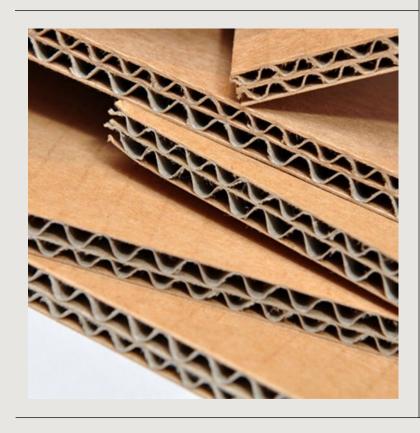
General Experimental Flow



Component	Condition	Condition	Condition	Condition	Condition	Condition
(mL)	1	2	3	4	5	6
ASW	750	750				
Instant Ocean			750	750	750	750
10% NH ₄ Cl	2.5	2.5	2.5	2.5	2.5	2.5
10% Cellulose	20	-1	20		20	
10% Sucrose		50		50		50
M&M mix	15	15	15	15		
HEPES	20	20	20	20	20	20
25mg/mL Fe- EDTA	0.15	0.15	0.15	0.15	0.15	0.15
MilliQ H ₂ O	192.35	162.35	192.35	162.35	207.35	177.35

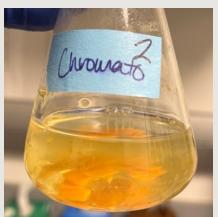

Wood (Sawdust)

Form of carbon consumed by the shipworms, most complex of the 4 structures


Cellulose

Primary component of wood, complex polymer

- Cellulose only carbon source
- Extracts from gill tissue and rest of organism
 - 2 concentrations of each tested



Examined printer, chromatography, waste, and mulberry papers; grass, leaves, rose stems, corn husks, and sawdust; and coffee sleeve, corrugated cardboard, ice cream carton, and business card

Acknowledgements

Schmidt Lab

PI: Eric Schmidt, Ph.D.

Bailey Miller, Ph.D.

Zhenjian Lin, Ph.D.

Paul Scesa, Ph.D.

Feng Li, Ph.D.

Rong Chen, Ph.D.

Jungu Kim, Ph.D.

Youjung Sung

Albebson Lim

Noel Lacerna

Aarthi Venugopalan

Jared Seale

Former Lab Members

Changshan Niu, Ph.D.

Snigdha Sarkar, Ph.D.

Noemi Paguigan, Ph.D.

Ying Cong, Ph.D.

Acknowledgements

The Honors College

The National Institutes of Health

- R01, R35, and U19 grants

The Office of Undergraduate Research

- Undergraduate Research Opportunities Program

The College of Science

- Departments of Chemistry, Biology, and Math

The College of Pharmacy

- Department of Medicinal Chemistry

L. S. SKAGGS PHARMACY INSTITUTE